Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(4): 2388-2394, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38384943

RESUMO

Most cytochrome P450 (P450) oxidations are considered to occur with the active oxidant being a perferryl oxygen (FeO3+, Compound I). However, a ferric peroxide (FeO2®, Compound 0) mechanism has been proposed, as well, particularly for aldehyde substrates. We investigated three of these systems, the oxidative deformylation of the model substrates citronellal, 2-phenylpropionaldehyde, and 2-methyl-2-phenylpropionaldehyde by rabbit P450 2B4, using 18O labeling. The formic acid product contained one 18O derived from 18O2, which is indicative of a dominant Compound 0 mechanism. The formic acid also contained only one 18O derived from H218O, which ruled out a Compound I mechanism. The possibility of a Baeyer-Villiger reaction was examined by using synthesized possible intermediates, but our data do not support its presence. Overall, these findings unambiguously demonstrate the role of the Compound 0 pathway in these aldehyde oxidative deformylation reactions.

2.
Angew Chem Int Ed Engl ; 63(9): e202317711, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38206808

RESUMO

The 14α-demethylation step is critical in eukaryotic sterol biosynthesis, catalyzed by cytochrome P450 (P450) Family 51 enzymes, for example, with lanosterol in mammals. This conserved three-step reaction terminates in a C-C cleavage step that generates formic acid, the nature of which has been controversial. Proposed mechanisms involve roles of P450 Compound 0 (ferric peroxide anion, FeO2 - ) or Compound I (perferryl oxygen, FeO3+ ) reacting with either the aldehyde or its hydrate, respectively. Analysis of 18 O incorporation into formic acid from 18 O2 provides a means of distinguishing the two mechanisms. Human P450 51A1 incorporated 88 % 18 O (one atom) into formic acid, consistent with a major but not exclusive FeO2 - mechanism. Two P450 51 orthologs from amoeba and yeast showed similar results, while two orthologs from pathogenic trypanosomes showed roughly equal contributions of both mechanisms. An X-ray crystal structure of the human enzyme showed the aldehyde oxygen atom 3.5 Šaway from the heme iron atom. Experiments with human P450 51A1 and H2 18 O yielded primarily one 18 O atom but 14 % of the formic acid product with two 18 O atoms, indicative of a minor contribution of a Compound I mechanism. LC-MS evidence for a Compound 0-derived Baeyer-Villiger reaction product (a 14α-formyl ester) was also found.


Assuntos
Sistema Enzimático do Citocromo P-450 , Formiatos , Isótopos de Oxigênio , Esteróis , Animais , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigênio/química , Saccharomyces cerevisiae/metabolismo , Aldeídos , Desmetilação , Mamíferos/metabolismo
3.
J Biol Chem ; 300(1): 105495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006947

RESUMO

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Colesterol , Pregnenolona , Humanos , Adrenodoxina/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Enzima de Clivagem da Cadeia Lateral do Colesterol/isolamento & purificação , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Cinética , Pregnenolona/química , Pregnenolona/metabolismo , Ligação Proteica , Oxirredução , Estrutura Molecular
4.
Methods Enzymol ; 689: 39-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802581

RESUMO

Cytochrome P450 (P450) 17A1 plays a key role in steroidogenesis, in that this enzyme catalyzes the 17α-hydroxylation of both pregnenolone and progesterone, followed by a lyase reaction to cleave the C-20 land C-21 carbons from each steroid. The reactions are important in the production of both glucocorticoids and androgens. The enzyme is critical in humans but is also a drug target in treatment of prostate cancer. Detailed methods are described for the heterologous expression of human P450 17A1 in bacteria, purification of the recombinant enzyme, reconstitution of the enzyme system in the presence of cytochrome b5, and chromatographic procedures for sensitive analyses of reaction products. Historic assay approaches are reviewed. Some information is also provided about outstanding questions in the research field, including catalytic mechanisms and searches for selective inhibitors.


Assuntos
Liases , Humanos , Progesterona/metabolismo , Esteroides , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/química
5.
J Biol Chem ; 299(7): 104841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209823

RESUMO

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4ß,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3ß-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450 , Desmetilação , Lanosterol , Humanos , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Cinética , Lanosterol/química , Lanosterol/metabolismo , Oxirredução
6.
Nucleic Acids Res ; 51(8): 3888-3902, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36999602

RESUMO

To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIß and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIß, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.


Assuntos
Antineoplásicos , DNA Topoisomerase IV , Humanos , DNA Topoisomerase IV/genética , DNA Super-Helicoidal , Clivagem do DNA , Lateralidade Funcional , DNA Topoisomerases Tipo II/genética , DNA
7.
J Biol Chem ; 297(2): 100969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34273352

RESUMO

Cytochrome P450 (P450) 17A1 catalyzes the 17α-hydroxylation of progesterone and pregnenolone as well as the subsequent lyase cleavage of both products to generate androgens. However, the selective inhibition of the lyase reactions, particularly with 17α-hydroxy pregnenolone, remains a challenge for the treatment of prostate cancer. Here, we considered the mechanisms of inhibition of drugs that have been developed to inhibit P450 17A1, including ketoconazole, seviteronel, orteronel, and abiraterone, the only approved inhibitor used for prostate cancer therapy, as well as clotrimazole, known to inhibit P450 17A1. All five compounds bound to P450 17A1 in a multistep process, as observed spectrally, over a period of 10 to 30 s. However, no lags were observed for the onset of inhibition in rapid-quench experiments with any of these five compounds. Furthermore, the addition of substrate to inhibitor-P450 17A1 complexes led to an immediate formation of product, without a lag that could be attributed to conformational changes. Although abiraterone has been previously described as showing slow-onset inhibition (t1/2 = 30 min), we observed rapid and strong inhibition. These results are in contrast to inhibitors of P450 3A4, an enzyme with a larger active site in which complete inhibition is not observed with ketoconazole and clotrimazole until the changes are completed. Overall, our results indicate that both P450 17A1 reactions-17α-hydroxylation and lyase activity-are inhibited by the initial binding of any of these inhibitors, even though subsequent conformational changes occur.


Assuntos
Androgênios/biossíntese , Antineoplásicos Hormonais/farmacologia , Domínio Catalítico , Pregnenolona/metabolismo , Progesterona/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Androstenos/farmacologia , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/farmacologia , Cetoconazol/farmacologia , Cinética , Masculino , Naftalenos/farmacologia , Neoplasias da Próstata/enzimologia , Esteroide 17-alfa-Hidroxilase/metabolismo
8.
J Biol Chem ; 296: 100571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33753170

RESUMO

It has been recognized for >50 years that cytochrome b5 (b5) stimulates some cytochrome P450 (P450)-catalyzed oxidations, but the basis of this function is still not understood well. The strongest stimulation of catalytic activity by b5 is in the P450 17A1 lyase reaction, an essential step in androgen synthesis from 21-carbon (C21) steroids, making this an excellent model system to interrogate b5 function. One of the issues in studying b5-P450 interactions has been the limited solution assay methods. We constructed a fluorescently labeled variant of human b5 that can be used in titrations. The labeled b5 bound to WT P450 17A1 with a Kd of 2.5 nM and rapid kinetics, on the order of 1 s-1. Only weak binding was observed with the clinical P450 17A1 variants E305G, R347H, and R358Q; these mutants are deficient in lyase activity, which has been hypothesized to be due to attenuated b5 binding. Kd values were not affected by the presence of P450 17A1 substrates. A peptide containing the P450 17A1 Arg-347/Arg-358 region attenuated Alexa 488-T70C-b5 fluorescence at higher concentrations. The addition of NADPH-P450 reductase (POR) to an Alexa 488-T70C-b5:P450 17A1 complex resulted in a concentration-dependent partial restoration of b5 fluorescence, indicative of a ternary P450:b5:POR complex, which was also supported by gel filtration experiments. Overall, these results are interpreted in the context of a dynamic and tight P450 17A1:b5 complex that also binds POR to form a catalytically competent ternary complex, and variants that disrupt this interaction have low catalytic activity.


Assuntos
Androgênios/biossíntese , Citocromos b5/metabolismo , Liases/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Humanos , Cinética , Mutação , Ligação Proteica , Esteroide 17-alfa-Hidroxilase/genética
9.
J Biol Chem ; 296: 100223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449875

RESUMO

Cytochrome P450 (P450) 3A4 is the enzyme most involved in the metabolism of drugs and can also oxidize numerous steroids. This enzyme is also involved in one-half of pharmacokinetic drug-drug interactions, but details of the exact mechanisms of P450 3A4 inhibition are still unclear in many cases. Ketoconazole, clotrimazole, ritonavir, indinavir, and itraconazole are strong inhibitors; analysis of the kinetics of reversal of inhibition with the model substrate 7-benzoyl quinoline showed lag phases in several cases, consistent with multiple structures of P450 3A4 inhibitor complexes. Lags in the onset of inhibition were observed when inhibitors were added to P450 3A4 in 7-benzoyl quinoline O-debenzylation reactions, and similar patterns were observed for inhibition of testosterone 6ß-hydroxylation by ritonavir and indinavir. Upon mixing with inhibitors, P450 3A4 showed rapid binding as judged by a spectral shift with at least partial high-spin iron character, followed by a slower conversion to a low-spin iron-nitrogen complex. The changes were best described by two intermediate complexes, one being a partial high-spin form and the second another intermediate, with half-lives of seconds. The kinetics could be modeled in a system involving initial loose binding of inhibitor, followed by a slow step leading to a tighter complex on a multisecond time scale. Although some more complex possibilities cannot be dismissed, these results describe a system in which conformationally distinct forms of P450 3A4 bind inhibitors rapidly and two distinct P450-inhibitor complexes exist en route to the final enzyme-inhibitor complex with full inhibitory activity.


Assuntos
Clotrimazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/química , Indinavir/farmacologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Ritonavir/farmacologia , Esteroide Hidroxilases/antagonistas & inibidores , Animais , Biocatálise , Clonagem Molecular , Clotrimazol/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hidroxiquinolinas/síntese química , Hidroxiquinolinas/metabolismo , Indinavir/química , Itraconazol/química , Cetoconazol/química , Cinética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ritonavir/química , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
10.
Drug Metab Dispos ; 49(3): 179-187, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376147

RESUMO

CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Ativação do Canal Iônico/fisiologia , Triptofano/metabolismo , Animais , Cristalografia por Raios X/métodos , Citocromo P-450 CYP2D6/química , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...